
turbodbc Documentation
Release 2.0.0

Michael König

Jun 05, 2017

Contents

1 Introduction 3

2 Getting started 7

3 Advanced usage 11

4 ODBC configuration 15

5 Databases configuration and performance 19

6 Version history / changelog 25

7 Troubleshooting 31

8 Frequently asked questions 35

9 Contributing 37

10 API reference 41

11 Indices and tables 45

i

ii

turbodbc Documentation, Release 2.0.0

Turbodbc is a Python module to access relational databases via the Open Database Connectivity (ODBC) interface. Its
primary target audience are data scientist that use databases for which no efficient native Python drivers are available.

For maximum compatibility, turbodbc complies with the Python Database API Specification 2.0 (PEP 249). For
maximum performance, turbodbc offers built-in NumPy and Apache Arrow support and internally relies on batched
data transfer instead of single-record communication as other popular ODBC modules do.

Turbodbc is free to use (MIT license), open source (GitHub), works with Python 2.7 and Python 3.4+, and is available
for Linux, OSX, and Windows.

Turbodbc is routinely tested with MySQL, PostgreSQL, EXASOL, and MSSQL, but probably also works with your
database.

Contents 1

https://github.com/blue-yonder/turbodbc
https://en.wikipedia.org/wiki/Open_Database_Connectivity
https://www.python.org/dev/peps/pep-0249/
http://www.numpy.org
https://arrow.apache.org
https://github.com/blue-yonder/turbodbc/blob/master/LICENSE
https://github.com/blue-yonder/turbodbc
https://www.mysql.com
https://www.postgresql.org
http://www.exasol.com
http://microsoft.com/sql

turbodbc Documentation, Release 2.0.0

2 Contents

CHAPTER 1

Introduction

Turbodbc is a Python module to access relational databases via the Open Database Connectivity (ODBC) interface. In
addition to complying with the Python Database API Specification 2.0, turbodbc offers built-in NumPy support. Don’t
wait minutes for your results, just blink.

Features

• Bulk retrieval of result sets

• Built-in NumPy conversion

• Bulk transfer of query parameters

• Asynchronous I/O for result sets

• Automatic conversion of decimal type to integer, float, and string as appropriate

• Supported data types for both result sets and parameters: int, float, str, bool, datetime.date,
datetime.datetime

• Also provides a high-level C++11 database driver under the hood

• Tested with Python 2.7, 3.4, 3.5, and 3.6

• Tested on 64 bit versions of Linux, OSX, and Windows (Python 3.5+).

Why should I use turbodbc instead of other ODBC modules?

Short answer: turbodbc is faster.

Slightly longer answer: turbodbc is faster, much faster if you want to work with NumPy.

Medium-length answer: I have tested turbodbc and pyodbc (probably the most popular Python ODBC module) with
various databases (Exasol, PostgreSQL, MySQL) and corresponding ODBC drivers. I found turbodbc to be consis-
tently faster.

3

turbodbc Documentation, Release 2.0.0

For retrieving result sets, I found speedups between 1.5 and 7 retrieving plain Python objects. For inserting data, I
found speedups of up to 100.

Is this completely scientific? Not at all. I have not told you about which hardware I used, which operating systems,
drivers, database versions, network bandwidth, database layout, SQL queries, what is measured, and how I performed
was measured.

All I can tell you is that if I exchange pyodbc with turbodbc, my benchmarks took less time, often approaching one
(reading) or two (writing) orders of magnitude. Give it a spin for yourself, and tell me if you liked it.

Smooth. What is the trick?

Turbodbc exploits buffering.

• Turbodbc implements both sending parameters and retrieving result sets using buffers of multiple
rows/parameter sets. This avoids round trips to the ODBC driver and (depending how well the ODBC driver is
written) to the database.

• Multiple buffers are used for asynchronous I/O. This allows to interleave Python object conversion and direct
database interaction (see performance options below).

• Buffers contain binary representations of data. NumPy arrays contain binary representations of data. Good thing
they are often the same, so instead of converting we can just copy data.

Supported environments

• 64 bit operating systems (32 bit not supported)

• Linux (successfully built on Ubuntu 12, Ubuntu 14, Debian 7, Debian 8)

• OSX (successfully built on Sierra a.k.a. 10.12 and El Capitan a.k.a. 10.11)

• Windows (successfully built on Windows 10)

• Python 2.7, 3.4, 3.5, 3.6

• More environments probably work as well, but these are the versions that are regularly tested on Travis or local
development machines.

Supported databases

Turbodbc uses suites of unit and integration tests to ensure quality. Every time turbodbc’s code is updated on GitHub,
turbodbc is automatically built from scratch and tested with the following databases:

• PostgreSQL (Linux, OSX, Windows)

• MySQL (Linux, OSX, Windows)

• MSSQL (Windows, with official MS driver)

During development, turbodbc is tested with the following database:

• Exasol (Linux, OSX)

Releases will not be made if any (implemented) test fails for any of the databases listed above. The following
databases/driver combinations are tested on an irregular basis:

4 Chapter 1. Introduction

turbodbc Documentation, Release 2.0.0

• MSSQL with FreeTDS (Linux, OSX)

• MSSQL with Microsoft’s official ODBC driver (Linux)

There is a good chance that turbodbc will work with other, totally untested databases as well. There is, however, an
equally good chance that you will encounter compatibility issues. If you encounter one, please take the time to report
it so turbodbc can be improved to work with more real-world databases. Thanks!

1.5. Supported databases 5

turbodbc Documentation, Release 2.0.0

6 Chapter 1. Introduction

CHAPTER 2

Getting started

Installation

Linux and OSX

To install turbodbc on Linux and OSX, please use the following command:

pip install turbodbc

This will trigger a source build that requires compiling C++ code. Please make sure the following prerequisites are
met:

Requirement Linux (apt-get install) OSX (brew install)
C++11 compiler G++-4.8 or higher clang with OSX 10.9+
Boost library + headers (1) libboost-all-dev boost
ODBC library + headers unixodbc-dev unixodbc
Python headers python-dev use pyenv to install

Please pip install numpy before installing turbodbc, because turbodbc will search for the numpy Python pack-
age at installation/compile time. If NumPy is not installed, turbodbc will not compile the optional NumPy support
features. Similarly, please pip install pyarrow before installing turbodbc if you would like to use the optional
Apache Arrow support.

(1) The minimum viable Boost setup requires the libraries variant, optional, datetime, and locale.

Windows

To install turbodbc on Windows, please use the following command:

pip install turbodbc

This will download and install a binary wheel, no compilation required. You still need to meet the following prerequi-
sites, though:

7

turbodbc Documentation, Release 2.0.0

Requirement Windows
OS Bitness 64-bit
Python 3.5 or 3.6, 64-bit
Runtime MSVS 2015 Update 3 Redistributable, 64 bit

If you require NumPy support, please

pip install numpy

Sometime after installing turbodbc. Apache Arrow support is not yet available on Windows.

Basic usage

Turbodbc follows the specification of the Python database API v2 (PEP 249). Here is a short summary, including the
parts not specified by the PEP.

Establish a connection with your database

All ODBC appications, including turbodbc, use connection strings to establish connections with a database. If you
know how the connection string for your database looks like, use the following lines to establish a connection:

>>> from turbodbc import connect
>>> connection = connect(connection_string='Driver={PostgreSQL};Server=IP address;
→˓Port=5432;Database=myDataBase;Uid=myUsername;Pwd=myPassword;')

If you do not specify the connection_string keyword argument, turbodbc will create a connection string based
on the keyword arguments you pass to connect:

>>> from turbodbc import connect
>>> connection = connect(dsn='My data source name as defined by your ODBC
→˓configuration')

The dsn is the data source name of your connection. Data source names uniquely identify connection settings that
shall be used to connect with a database. Data source names are part of your ODBC configuration and you need to
set them up yourself. Once set up, however, all ODBC applications can use the same data source name to refer to the
same set of connection options, typically including the host, database, driver settings, and sometimes even credentials.
If your ODBC environment is set up properly, just using the dsn option should be sufficient.

You can add extra options besides the dsn to overwrite or add settings:

>>> from turbodbc import connect
>>> connection = connect(dsn='my dsn', user='my user has precedence')
>>> connection = connect(dsn='my dsn', username='field names depend on the driver')

Last but not least, you can also do without a dsn and just specify all required configuration options directly:

>>> from turbodbc import connect
>>> connection = connect(driver="PostgreSQL",
... server="hostname",
... port="5432",
... database="myDataBase",
... uid="myUsername",
... pwd="myPassword")

8 Chapter 2. Getting started

https://www.microsoft.com/en-us/download/details.aspx?id=53840
https://www.python.org/dev/peps/pep-0249/

turbodbc Documentation, Release 2.0.0

Executing SQL queries and retrieving results

To execute a query, you need to create a cursor object first:

>>> cursor = connection.cursor()

This cursor object lets you execute SQL commands and queries. Here is how to execute a SELECT query:

>>> cursor.execute('SELECT 42')

You have multiple options to retrieve the generated result set. For example, you can iterate over the cursor:

>>> for row in cursor:
... print row
[42L]

Alternatively, you can fetch all results as a list of rows:

>>> cursor.fetchall()
[[42L]]

You can also retrieve result sets as NumPy arrays, see Advanced usage.

Executing manipulating SQL queries

As before, you need to create a cursor object first:

>>> cursor = connection.cursor()

You can now execute a basic INSERT query:

>>> cursor.execute("INSERT INTO TABLE my_integer_table VALUES (42, 17)")

This will insert two values, 42 and 17, in a single row of table my_integer_table. Inserting values like this is
impractical, because it requires to put the values into the actual SQL string.

To avoid this, you can pass parameters to execute():

>>> cursor.execute("INSERT INTO TABLE my_integer_table VALUES (?, ?)",
... [42, 17])

Please note the question marks ? in the SQL string that marks two parameters. Adding single rows at a time is not
efficient. You can add more than just a single row to a table in efficiently by using executemany():

>>> parameter_sets = [[42, 17],
... [23, 19],
... [314, 271]]
>>> cursor.executemany("INSERT INTO TABLE my_integer_table VALUES (?, ?)",
... parameter_sets)

Transactions

Turbodbc currently does not support autocommit. To commit your changes to the database, please use the following
command:

2.2. Basic usage 9

turbodbc Documentation, Release 2.0.0

>>> connection.commit()

If you want to roll back your changes, use the following command:

>>> connection.rollback()

Supported data types

Turbodbc supports the most common data types data scientists are interested in. The following table shows which
database types are converted to which Python types:

Database type(s) Python type
Integers, DECIMAL(<19,0) int
DOUBLE, DECIMAL(x, >0) float
BIT, boolean-like bool
TIMESTAMP, TIME datetime.datetime
DATE datetime.date
VARCHAR, strings, DECIMAL(>18, 0) unicode (str)

When using parameters with execute() and executemany(), the table is basically reversed. The first type in
the “database type(s)” column denotes the type used to transfer back data. For integers, 64-bit integers are transferred.
For strings, the length of the transferred VARCHAR depends on the length of the transferred strings.

10 Chapter 2. Getting started

CHAPTER 3

Advanced usage

Performance, compatibility, and behavior options

Turbodbc offers a way to adjust its behavior to tune performance and to achieve compatibility with your database. The
basic usage is this:

>>> from turbodbc import connect, make_options
>>> options = make_options()
>>> connect(dsn="my_dsn", turbodbc_options=options)

This will connect with your database using the default options. To use non-default options, supply keyword arguments
to make_options():

>>> from turbodbc import Megabytes
>>> options = make_options(read_buffer_size=Megabytes(100),
... parameter_sets_to_buffer=1000,
... use_async_io=True,
... prefer_unicode=True)
... autocommit=True)

Read buffer size

read_buffer_size affects how many result set rows are retrieved per batch of results. Set the attribute to
turbodbc.Megabytes(42) to have turbodbc determine the optimal number of rows per batch so that the to-
tal buffer amounts to 42 MB. This is recommended for most users and databases. You can also set the attribute to
turbodbc.Rows(13) if you would like to fetch results in batches of 13 rows. By default, turbodbc fetches results
in batches of 20 MB.

Please note that sometimes a single row of a result set may exceed the specified buffer size. This can happen if large
fields such as VARCHAR(8000000) or TEXT are part of the result set. In this case, results are fetched in batches of
single rows that exceed the specified size.

11

turbodbc Documentation, Release 2.0.0

Buffered parameter sets

Similarly, parameter_sets_to_buffer changes the number of parameter sets which are transferred per batch
of parameters (e.g., as sent with executemany()). Please note that it is not (yet) possible to use the Megabytes and
Rows classes here.

Asynchronous input/output

If you set use_async_io to True, turbodbc will use asynchronous I/O operations (limited to result sets for the
time being). Asynchronous I/O means that while the main thread converts result set rows retrieved from the database
to Python objects, another thread fetches a new batch of results from the database in the background. This may yield
a speedup of 2 if retrieving and converting are similarly fast operations.

Note: Asynchronous I/O is experimental and has to fully prove itself yet. Do not be afraid to give it a try, though.

Prefer unicode

Set prefer_unicode to True if your database does not fully support the UTF-8 encoding turbodbc prefers. With
this option you can tell turbodbc to use two-byte character strings with UCS-2/UTF-16 encoding. Use this option if
you try to connection to Microsoft SQL server (MSSQL).

Autocommit

Set autocommit to True if you want the database to COMMIT your changes automatically after each query or
command. By default, autocommit is disabled and users are required to call cursor.commit() to persist their
changes.

Note: Some databases that do not support transactions may even require this option to be set to True in order to
establish a connection at all.

Controlling autocommit behavior at runtime

You can enable and disable autocommit mode after you have established a connection, and you can also check whether
autocommit is currently enabled:

>>> from turbodbc import connect
>>> connection = connect(dsn="my DSN")
>>> connection.autocommit = True

[... more things happening ...]

>>> if not connection.autocommit:
... connection.commit()

12 Chapter 3. Advanced usage

turbodbc Documentation, Release 2.0.0

NumPy support

Note: Turbodbc’s NumPy support requires the numpy package to be installed. For all source builds, Numpy needs
to be installed before installing turbodbc. Please check the installation instructions for more details.

Obtaining NumPy result sets all at once

Here is how to use turbodbc to retrieve the full result set in the form of NumPy masked arrays:

>>> cursor.execute("SELECT A, B FROM my_table")
>>> cursor.fetchallnumpy()
OrderedDict([('A', masked_array(data = [42 --],

mask = [False True],
fill_value = 999999)),

('B', masked_array(data = [3.14 2.71],
mask = [False False],
fill_value = 1e+20))])

Obtaining NumPy result sets in batches

You can also fetch NumPy result sets in batches using an iterable:

>>> cursor.execute("SELECT A, B FROM my_table")
>>> batches = cursor.fetchnumpybatches()
>>> for batch in batches:
... print(batch)
OrderedDict([('A', masked_array(data = [42 --],

mask = [False True],
fill_value = 999999)),

('B', masked_array(data = [3.14 2.71],
mask = [False False],
fill_value = 1e+20))])

The size of the batches depends on the read_buffer_size attribute set in the performance options.

Notes regarding NumPy support

• NumPy results are returned as an OrderedDict of column name/value pairs. The column order is the same
as in your query.

• The column values are of type MaskedArray. Any NULL values you have in your database will show up as
masked entries (NULL values in string-like columns will shop up as None objects).

• NumPy support is currently limited to result sets.

The following table shows how the most common data types data scientists are interested in are converted to NumPy
columns:

3.3. NumPy support 13

turbodbc Documentation, Release 2.0.0

Database type(s) Python type
Integers, DECIMAL(<19,0) int64
DOUBLE, DECIMAL(x, >0) float64
BIT, boolean-like bool_
TIMESTAMP, TIME datetime64[us]
DATE datetime64[D}
VARCHAR, strings, DECIMAL(>18, 0) object_

Apache Arrow support

Note: Turbodbc’s Apache Arrow support requires the pyarrow package to be installed. For all source builds,
Apache Arrow needs to be installed before installing turbodbc. Please check the installation instructions for more
details.

Apache Arrow is a high-performance data layer that is built for cross-system columnar in-memory analytics using a
data model designed to make the most of the CPU cache and vector operations.

Note: Apache Arrow support in turbodbc is still experimental and may not be as efficient as possible yet. Also,
Apache Arrow support is not yet available for Windows and has some issues with Unicode fields. Stay tuned for
upcoming improvements.

Obtaining Apache Arrow result sets

Here is how to use turbodbc to retrieve the full result set in the form of an Apache Arrow table:

>>> cursor.execute("SELECT A, B FROM my_table")
>>> table = cursor.fetchallarrow()
>>> table
pyarrow.Table
A: int64
B: string
>>> table[0].to_pylist()
[42]
>>> table[1].to_pylist()
[u'hello']

Looking at the data like this is not particularly useful. However, there is some really useful stuff you can do with an
Apache Arrow table, for example, convert it to a Pandas dataframe like this:

>>> table.to_pandas()
A B

0 42 hello

14 Chapter 3. Advanced usage

https://arrow.apache.org
https://arrow.apache.org/docs/python/data.html
https://arrow.apache.org/docs/python/pandas.html

CHAPTER 4

ODBC configuration

ODBC configuration can be a real pain, in particular if you are new to ODBC. So here is a short primer of what ODBC
is about.

ODBC basics

ODBC is the abbreviation for open database connectivity, a standard for interacting with relational databases that
has been considerably influenced by Microsoft. The aim of the standard is that applications can work with multiple
databases with little to no adjustments in code.

This is made possible by combining three components with each other:

• Database vendors supply ODBC drivers.

• An ODBC driver manager manages ODBC data sources.

• Applications use the ODBC driver manager to connect to data sources.

Turbodbc makes it easy to build applications that use the ODBC driver manager, but it still requires the driver manager
to be configured correctly so that your databases are found.

ODBC concepts

ODBC drivers

ODBC drivers comply with the ODBC API, meaning that they offer a set of about 80 C functions with well-defined
behavior that internally use database-specific commands to achieve the desired behavior. There is some wiggle room
that allows ODBC drivers to implement certain things differently or even exclude support for some advanced usage
patterns. But in essence, all ODBC drivers are born more or less equal.

ODBC drivers are easy to come by. Major database vendors offer ODBC drivers as free downloads (Microsoft SQL
server, Exasol, Teradata, etc). Open source databases provide ODBC databases as part of their projects (PostgreSQL,

15

https://en.wikipedia.org/wiki/Open_Database_Connectivity
https://www.microsoft.com/en-us/download/details.aspx?id=50420
https://www.microsoft.com/en-us/download/details.aspx?id=50420
https://www.exasol.com/portal/display/DOWNLOAD/6.0
https://downloads.teradata.com/download/connectivity/odbc-driver/windows
https://odbc.postgresql.org

turbodbc Documentation, Release 2.0.0

Impala, MongoDB). Many ODBC drivers are also shipped with Linux distributions or are readily available via Home-
brew for OSX. Last but not least, commercial ODBC drivers are available at Progress or easysoft, claiming better
performance that their freely available counterparts.

ODBC driver manager

The driver manager is a somewhat odd centerpiece. It is a library that can be used just like any ODBC driver. It
provides definitions for various data types, and actual ODBC drivers often rely on these definitions for compilation.
The driver manager has a built-in configuration of data sources. A data source has a name (the data source name or
DSN), is associated with an ODBC driver, contains configuration options such as the database host or the connection
locale, and sometimes it also contains credentials for authentication with the database. Finally, the driver manager
typically comes with a tool to edit data sources.

Driver managers are less numerous, but still easily available on all major platforms. Windows comes with a preinstalled
ODBC database manager. On Linux and OSX, there are competing driver managers in unixodbc and iodbc.

Note: Turbodbc is tested with Windows’s built-in driver manager and unixodbc on Linux and OSX.

ODBC applications

Applications finally use the ODBC API and link to the driver manager. Any time they open a connection, they need to
specify the data source name that contains connection attributes that relate to the desired database. Alternatively, they
can specify all necessary connection options directly.

Linking to the driver manager instead of the ODBC driver directly means that changing to another driver is as simple
as exchanging the connection string at runtime instead of tediously linking to a new driver. Linking to the driver
manager also means that the driver manager handles many capability and compatibility options by transparently using
alternative functions and workarounds as required.

Driver manager configuration

The driver manager needs to know to which databases to connect with which ODBC drivers. This configuration needs
to be maintained by the user.

Windows

Windows comes with a preinstalled driver manager that can be configured with the ODBC data source administrator.
Please see Microsoft’s official documentation for this. Besides adding your data sources, no special measures need to
be done for your configuration to be found.

Unixodbc (Linux and OSX)

Unixodbc is a different beast. For one thing, you need to install it first. That is usually an easy task involving a simple
apt-get install unixodbc (Linux) or brew install unixodbc (OSX with Homebrew).

However, unixodbc can be configured in many ways, both with and without graphical guidance. The official docu-
mentation is not always easy to follow, and finding what you are looking for may be more difficult than you planned
for and may involve looking into unixodbc’s source code.

16 Chapter 4. ODBC configuration

https://www.cloudera.com/downloads/connectors/impala/odbc/2-5-37.html
https://github.com/NYUITP/sp13_10g
https://github.com/Homebrew/homebrew-core
https://github.com/Homebrew/homebrew-core
https://www.progress.com/odbc
http://www.easysoft.com/index.html
http://www.unixodbc.org
http://www.iodbc.org/dataspace/doc/iodbc/wiki/iodbcWiki/WelcomeVisitors
https://docs.microsoft.com/en-us/sql/odbc/admin/odbc-data-source-administrator
https://github.com/Homebrew/homebrew-core

turbodbc Documentation, Release 2.0.0

The following primer assumes that no graphic tools are used (as is often common in server environments). It is not
specific to turbodbc and based on information available at these locations:

• Unixodbc documentation “hub”

• Details on using unixodbc without a GUI

• Unixodbc man page

ODBC configuration files

Unixodbc’s main configuration file is usually called odbc.ini. odbc.ini defines data sources that are available
for connecting. It is a simple ini-style text file with the following layout:

[data source name]
Driver = /path/to/driver_library.so
Option1 = Value
Option2 = Other value

[other data source]
Driver = Identifier specified in odbcinst.ini file
OptionA = Value

The sections define data source names that can be used to connect with the respective database. Each section requires
a Driver key. The value of this key may either contain the path to the database’s ODBC driver or a key that identifies
the driver in unixodbc’s other configuration file odbcinst.ini. Each section may contain an arbitrary number of
key-value pairs that specify further connection options. These connection options are driver-specific, so you need to
refer to the ODBC driver’s reference for that.

As mentioned before, unixodbc features a second (and optional) configuration file usually called odbcinst.ini.
This file lists available ODBC drivers and labels them for convenient reference in odbc.ini. The file also follows
the ini-style convention:

[driver A]
Driver = /path/to/driver_library.so
Threading = 2
Description = A driver to access ShinyDB databases

[driver B]
Driver = /some/other/driver/library.so

The sections define names that can be used as values for the Driver keys in odbc.ini. Each section needs to
feature Driver keys themselves, where the values represent paths to the respective ODBC drivers. Some additional
options are available such as the Threading level (see unixodbc’s source code for details) or a Description
field.

Configuration file placement options

Unixodbc has a few places where it looks for its configuration files:

• Global configuration files are found in /etc/odbc.ini and /etc/odbcinst.ini. Data sources defined
in /etc/odbc.ini are available to all users of your computer. Drivers defined in /etc/odbcinst.ini
can be used by all users of your computer.

• Users can define additional data sources by adding the file ~/.odbc.ini to their home directory. It seems
that a file called ~/.odbcinst.ini has no effect.

4.3. Driver manager configuration 17

http://www.unixodbc.org/doc/
http://www.unixodbc.org/odbcinst.html
https://www.systutorials.com/docs/linux/man/7-unixODBC/
https://en.wikipedia.org/wiki/INI_file
https://en.wikipedia.org/wiki/INI_file
https://sourceforge.net/p/unixodbc/code/HEAD/tree/trunk/DriverManager/__handles.c#l260

turbodbc Documentation, Release 2.0.0

• Users can add a folder in which to look for configuration files by setting the ODBCSYSINI environment vari-
able:

> export ODBCSYSINI=/my/folder

This will override the configuration files found at /etc. Place your configuration files at /my/folder/
odbc.ini and /my/folder/odbcinst.ini.

• Users can override the path for the user-specific odbc.ini file by setting the ODBCINI environment variable:

> export ODBCINI=/full/path/to/odbc.ini

If you set this option, unixodbc will no longer consider ~/.odbc.ini.

Note: Do not expect the ODBCINSTINI environment variable to work just as ODBCINI. Instead, the
ODBCINSTINI specifies the file name of odbcinst.ini relative to the value of the ODBCSYSINI vari-
able. I suggest not to use this variable since it is outright confusing.

Configuration file placement recommendations

Here are a few typical scenarios:

• First steps with unixodbc: Create a new folder that contains odbc.ini and odbcinst.ini. Set the
ODBCSYSINI variable to this folder.

• Experimenting with a new database/driver: Create a new folder that contains odbc.ini and odbcinst.
ini. Set the ODBCSYSINI variable to this folder.

• Provision a system with drivers: Place an odbcinst.ini file at /etc/odbcinst.ini. Tell users to
configure their databases using ~/odbc.ini or setting ODBCINI.

• Switching between multiple distinct configurations (test/production): Use the ODBCSYSINI variable if the
configurations do not share common drivers. Otherwise, use the ODBCINI variable to switch between different
odbc.ini files.

18 Chapter 4. ODBC configuration

CHAPTER 5

Databases configuration and performance

As already outlined in the more general ODBC configuration section, connecting with your database via ODBC can
be a real pain. Making matters worse, database performance may significantly depend on the configuration as well.

Well, this section tries to make life just a tad easier by providing recommended configurations for various databases.
For some databases, comparisons with other database access modules are provided as well so that you know what kind
of performance to expect.

Note: The quality of the ODBC driver for a given database heavily affects performance of all ODBC applications
using this driver. Even though turbodbc was built to exploit buffering and what else the ODBC API has to offer,
it cannot work wonders when the ODBC driver is not up to the task. In such circumstances, other, non-ODBC
technologies may be available that outperform turbodbc by a considerable margin.

Exasol

Exasol is one of turbodbc’s main development databases, and also provided the initial motivation for creating turbodbc.
Here are the recommended settings for connecting to an Exasol database via ODBC using the turbodbc module for
Python.

Recommended odbcinst.ini (Linux)

[Exasol driver]
Driver = /path/to/libexaodbc-uo2214lv1.so # only when libodbc.so.2 is not present
Driver = /path/to/libexaodbc-uo2214lv2.so # only when libodbc.so.2 is present
Threading = 2

• Exasol ships drivers for various versions of unixodbc. Any modern system should use the uo2214 driver
variants. Choose the lv1 version if your system contains the file libodbc.so.1. If it does not, choose lv2
instead.

19

http://www.exasol.com

turbodbc Documentation, Release 2.0.0

• Threading = 2 seems to be required to handle some thread issues with the driver.

Recommended odbcinst.ini (OSX)

[Exasol driver]
Driver = /path/to/libexaodbc-io418sys.dylib
Threading = 2

• The driver listed here is built with the iodbc library. All turbodbc tests work with this driver even though
turbodbc uses unixodbc.

• Threading = 2 seems to be required to handle some thread issues with the driver.

Recommended data source configuration

[Exasol]
DRIVER = Exasol driver
EXAHOST = <host>:<port_range>
EXAUID = <user>
EXAPWD = <password>
EXASCHEMA = <default_schema>
CONNECTIONLCALL = en_US.utf-8

• CONNECTIONLCALL is set to a locale with unicode support to avoid problems with retrieving Unicode charac-
ters.

Recommended turbodbc configuration

The default turbodbc connection options work fine for Exasol. You can probably tune the performance a little by
increasing the read buffer size to 100 Megabytes. Exasol claims that their database works best with this setting.

See the advanced options for details.

>>> from turbodbc import connect, make_options, Megabytes
>>> options = make_options(read_buffer_size=Megabytes(100))
>>> connect(dsn="Exasol", turbodbc_options=options)

PostgreSQL

PostgreSQL is part of turbodbc’s integration databases. That means that each commit in turbodbc’s repository is
automatically tested against PostgreSQL to ensure compatibility. Here are the recommended settings for connecting
to a PostgreSQL database via ODBC using the turbodbc module for Python.

Note: PostgreSQL’s free ODBC driver is not optimized for performance. Hence, there is not too much turbodbc can
do to improve speed. You will achieve much better performance with psycopg2 or asyncpg.

20 Chapter 5. Databases configuration and performance

https://www.postgresql.org
https://github.com/psycopg/psycopg2
https://github.com/MagicStack/asyncpg

turbodbc Documentation, Release 2.0.0

Recommended odbcinst.ini (Linux)

[PostgreSQL Driver]
Driver = /usr/lib/x86_64-linux-gnu/odbc/psqlodbcw.so
Threading = 2

• Threading = 2 is a safe choice to avoid potential thread issues with the driver, but you can also attempt
using the driver without this option.

Recommended odbcinst.ini (OSX)

[PostgreSQL Driver]
Driver = /usr/local/lib/psqlodbcw.so
Threading = 2

• Threading = 2 is a safe choice to avoid potential thread issues with the driver, but you can also attempt
using the driver without this option.

Recommended data source configuration

[PostgreSQL]
Driver = PostgreSQL Driver
Database = <database name>
Servername = <host>
UserName = <user>
Password = <password>
Port = <port, default is 5432>
Protocol = 7.4
UseDeclareFetch = 1
Fetch = 10000
UseServerSidePrepare = 1
BoolsAsChar = 0
ConnSettings = set time zone 'UTC';

• Protocol = 7.4 indicates version 3 of the PostgreSQL protocol is to be used, which is the latest one.

• UseDeclareFetch = 1 means that the driver will only cache a few lines of the result set instead of the
entire result set (which may easily eat up all available memory). The downside is that PostgreSQL will always
cache exactly Fetch lines, no matter what the ODBC application (including turbodbc) actually requires.

• Fetch = 10000 tells the PostgreSQL ODBC driver to fetch results from the database exactly in batches of
10,000 rows (no matter what turbodbc or any other ODBC application declares as the batch size). Using a
high value may improve performance, but increases memory consumption in particular for tables with many
columns. Low values reduces the memory footprint, but increases the number of database roundtrips, which
may dominate performance for large result sets. The default value is 100.

• UseServerSidePrepare = 1 means the server will prepare queries rather than the ODBC driver. This
yields the most accurate results concerning result sets.

• BoolsAsChar = 0 tells the driver to return boolean fields as booleans (SQL_BIT in ODBC-speak) instead
of characters. Turbodbc can deal with booleans, so make sure to use them.

• ConnSettings = set time zone 'UTC'; sets the session time zone to UTC. This will yield consis-
tent values for fields of types WITH TIME ZONE information.

5.2. PostgreSQL 21

turbodbc Documentation, Release 2.0.0

Note: ODBC configuration files generated by the PostgreSQL generation utility use the string No to deactivate
options. It is recommended to replace all occurrences of No with 0. The reason is that Yes will not work as expected,
and also deactivate the option. Use 1 instead of Yes to get the desired result.

Recommended turbodbc configuration

The default turbodbc connection options work fine for PostgreSQL. As stated above, performance is not great due to
the ODBC driver.

>>> from turbodbc import connect
>>> connect(dsn="PostgreSQL")

MySQL

MySQL is part of turbodbc’s integration databases. That means that each commit in turbodbc’s repository is automat-
ically tested against MySQL to ensure compatibility. Here are the recommended settings for connecting to a MySQL
database via ODBC using the turbodbc module for Python.

Note: You can use the MySQL ODBC driver to connect with databases that use the MySQL wire protocol. Examples
for such databases are MariaDB, Amazon Aurora DB, or MemSQL.

Recommended odbcinst.ini (Linux)

[MySQL Driver]
Driver = /usr/lib/x86_64-linux-gnu/odbc/libmyodbc.so
Threading = 2

• Threading = 2 is a safe choice to avoid potential thread issues with the driver, but you can also attempt
using the driver without this option.

Recommended data source configuration

[MySQL]
Driver = MySQL Driver
SERVER = <host>
UID = <user>
PASSWORD = <password>
DATABASE = <database name>
PORT = <port, default is 3306>
INITSTMT = set session time_zone ='+00:00';

• INITSTMT = set session time_zone ='+00:00'; sets the session time zone to UTC. This will
yield consistent values for fields of type TIMESTAMP.

22 Chapter 5. Databases configuration and performance

https://www.mysql.com
https://mariadb.org
https://aws.amazon.com/rds/aurora/details/?nc1=h_ls
http://www.memsql.com
https://dev.mysql.com/doc/refman/5.7/en/datetime.html

turbodbc Documentation, Release 2.0.0

Recommended turbodbc configuration

The default turbodbc connection options work fine for MySQL.

>>> from turbodbc import connect
>>> connect(dsn="MySQL")

Microsoft SQL server (MSSQL)

Microsoft SQL server (MSSQL) is part of turbodbc’s integration databases. That means that each commit in turbodbc’s
repository is automatically tested against MSSQL to ensure compatibility. Here are the recommended settings for
connecting to a Microsoft SQL database via ODBC using the turbodbc module for Python.

Recommended odbcinst.ini (Linux)

On Linux, you have the choice between two popular drivers.

Official Microsoft ODBC driver

Microsoft offers an official ODBC driver for selected modern Linux distributions.

[MSSQL Driver]
Driver=/opt/microsoft/msodbcsql/lib64/libmsodbcsql-13.1.so.4.0

FreeTDS

FreeTDS is an open source ODBC driver that supports MSSQL. It is stable, has been around for well over decade and
is actively maintained. However, it is not officially supported by Microsoft.

[FreeTDS Driver]
Driver = /usr/local/lib/libtdsodbc.so

Recommended odbcinst.ini (OSX)

FreeTDS seems to be the only available driver for OSX that can connect to MSSQL databases.

[FreeTDS Driver]
Driver = /usr/local/lib/libtdsodbc.so

Recommended data source configuration

Official Microsoft ODBC driver (Windows)

Put these values in your registry under the given key. Be sure to prefer the latest ODBC driver over any driver that
may come bundled with your Windows version.

5.4. Microsoft SQL server (MSSQL) 23

https://www.microsoft.com/sql
https://docs.microsoft.com/en-us/sql/connect/odbc/linux/microsoft-odbc-driver-for-sql-server-on-linux
https://docs.microsoft.com/en-us/sql/connect/odbc/linux/installing-the-microsoft-odbc-driver-for-sql-server-on-linux
http://www.freetds.org
https://github.com/FreeTDS/freetds
http://www.freetds.org
https://www.microsoft.com/en-us/download/details.aspx?id=50420

turbodbc Documentation, Release 2.0.0

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC.INI\MSSQL]
"Driver"="C:\\Windows\\system32\\msodbcsql13.dll"
"Server"="<host>"
"Database"="<database>"

Official Microsoft ODBC driver (Linux)

[MSSQL]
Driver = MSSQL Driver
Server = <host>,<port>
Database = <database>

Note: You cannot specify credentials for MSSQL databases in odbc.ini.

FreeTDS data sources

[MSSQL]
Driver = FreeTDS Driver
Server = <host>
Port = <post>
Database = <database>

Note: You cannot specify credentials for MSSQL databases in odbc.ini.

Recommended turbodbc configuration

The default turbodbc connection options have issues with Unicode strings on MSSQL. Please make sure to set the
prefer_unicode option.

>>> from turbodbc import connect, make_options
>>> options = make_options(prefer_unicode=True)
>>> connect(dsn="MSSQL", turbodbc_options=options)

Warning: If you forget to set prefer_unicode, you may get anything from garbled up characters (e.g.,
u'\xe2\x99\xa5' instead of the unicode character u'\u2665') or even ODBC error messages such as
[FreeTDS][SQL Server]Invalid cursor state.

24 Chapter 5. Databases configuration and performance

CHAPTER 6

Version history / changelog

From version 2.0.0, turbodbc adapts semantic versioning.

Version 2.0.0

• Initial support for the arrow data format with the Cursor.fetchallarrow() method. Still in alpha stage,
mileage may vary (Windows not yet supported, UTF-16 unicode not yet supported). Big thanks to @xhochy!

• prefer_unicode option now also affects column name rendering when gathering results from the database.
This effectively enables support for Unicode column names for some databases.

• Add module version number turbodbc.__version__

• Remove deprecated performance options for connect(). Use connect(...,
turbodbc_options=make_options(...)) instead.

Earlier versions (not conforming to semantic versioning)

The following versions do not conform to semantic versioning. The meaning of the major.minor.revision
versions is:

• Major: psychological ;-)

• Minor: If incremented, this indicates a breaking change

• Revision: If incremented, indicates non-breaking change (either feature or bug fix)

Version 1.1.2

• Added autocommit as a keyword argument to make_options(). As the name suggests, this allows you
to enable automatic COMMIT operations after each operation. It also improves compatibility with databases that

25

turbodbc Documentation, Release 2.0.0

do not support transactions.

• Added autocommit property to Connection class that allows switching autocommit mode after the con-
nection was created.

• Fixed bug with cursor.rowcount not being reset to -1 when calls to execute() or executemany()
raised exceptions.

• Fixed bug with cursor.rowcount not showing the correct value when manipulating queries were used
without placeholders, i.e., with parameters baked into the query.

• Global interpreter lock (GIL) is released during some operations to facilitate basic multi-threading (thanks
@chmp)

• Internal: The return code SQL_SUCCESS_WITH_INFO is now treated as a success instead of an error when al-
locating environment, connection, and statement handles. This may improve compatibility with some databases.

Version 1.1.1

• Windows is now _officially_ supported (64 bit, Python 3.5 and 3.6). From now on, code is automatically
compiled and tested on Linux, OSX, and Windows (thanks @TWAC for support). Windows binary wheels are
uploaded to pypi.

• Added supported for fetching results in batches of NumPy objects with cursor.fetchnumpybatches()
(thanks @yaxxie)

• MSSQL is now part of the Windows test suite (thanks @TWAC)

• connect() now allows to specify a connection_string instead of individual arguments that are then
compiles into a connection string (thanks @TWAC).

Version 1.1.0

• Added support for databases that require Unicode data to be transported in UCS-2/UCS-16 format rather than
UTF-8, e.g., MSSQL.

• Added _experimental_ support for Windows source distribution builds. Windows builds are not fully (or au-
tomatically) tested yet, and still require significant effort on the user side to compile (thanks @TWAC for this
initial version)

• Added new cursor.fetchnumpybatches() method which returns a generator to iterate over result sets
in batch sizes as defined by buffer size or rowcount (thanks @yaxxie)

• Added make_options() function that take all performance and compatibility settings as keyword arguments.

• Deprecated all performance options (read_buffer_size, use_async_io, and
parameter_sets_to_buffer) for connect(). Please move these keyword arguments to
make_options(). Then, set connect{}‘s new keyword argument turbodbc_options to the
result of make_options(). This effectively separates performance options from options passed to the
ODBC connection string.

• Removed deprecated option rows_to_buffer from turbodbc.connect() (see version 0.4.1 for de-
tails).

• The order of arguments for turbodbc.connect() has changed; this may affect you if you have not used
keyword arguments.

26 Chapter 6. Version history / changelog

turbodbc Documentation, Release 2.0.0

• The behavior of cursor.fetchallnumpy() has changed a little. The mask attribute of a generated
numpy.MaskedArray instance is shortened to False from the previous [False, ..., False] if the
mask is False for all entries. This can cause problems when you access individual indices of the mask.

• Updated pybind11 requirement to at least 2.1.0.

• Internal: Some types have changed to accomodate for Linux/OSX/Windows compatibility. In particular, a few
long types were converted to intptr_t and int64_t where appropriate. In particular, this affects the
field type that may be used by C++ end users (so they exist).

Version 1.0.5

• Internal: Remove some const pointers to resolve some compile issues with xcode 6.4 (thanks @xhochy)

Version 1.0.4

• Added possibility to set unixodbc include and library directories in setup.py. Required for conda builds.

Version 1.0.3

• Improved compatibility with ODBC drivers (e.g. FreeTDS) that do not support ODBC’s
SQLDescribeParam() function by using a default parameter type.

• Used a default parameter type when the ODBC driver cannot determine a parameter’s type, for example when
using column expressions for INSERT statements.

• Improved compatibility with some ODBC drivers (e.g. Microsoft’s official MSSQL ODBC driver) for setting
timestamps with fractional seconds.

Version 1.0.2

• Added support for chaining operations to Cursor.execute() and Cursor.executemany(). This al-
lows one-liners such as cursor.execute("SELECT 42").fetchallnumpy().

• Right before a database connection is closed, any open transactions are explicitly rolled back. This improves
compatibility with ODBC drivers that do not perform automatic rollbacks such as Microsoft’s official ODBC
driver.

• Improved stability of turbodbc when facing errors while closing connections, statements, and environments. In
earlier versions, connection timeouts etc. could have lead to the Python process’s termination.

• Source distribution now contains license, readme, and changelog.

Version 1.0.1

• Added support for OSX

6.6. Version 1.0.5 27

turbodbc Documentation, Release 2.0.0

Version 1.0.0

• Added support for Python 3. Python 2 is still supported as well. Tested with Python 2.7, 3.4, 3.5, and 3.6.

• Added six package as dependency

• Turbodbc uses pybind11 instead of Boost.Python to generate its Python bindings. pybind11 is available as a
Python package and automatically installed when you install turbodbc. Other boost libraries are still required
for other aspects of the code.

• A more modern compiler is required due to the pybind11 dependency. GCC 4.8 will suffice.

• Internal: Move remaining stuff depending on python to turbodbc_python

• Internal: Now requires cmake 2.8.12+ (get it with pip install cmake)

Version 0.5.1

• Fixed build issue with older numpy versions, e.g., 1.8 (thanks @xhochy)

Version 0.5.0

• Improved performance of parameter-based operations.

• Internal: Major modifications to the way parameters are handled.

Version 0.4.1

• The size of the input buffers for retrieving result sets can now be set to a certain amount of memory instead of
using a fixed number of rows. Use the optional read_buffer_size parameter of turbodbc.connect()
and set it to instances of the new top-level classes Megabytes and Rows (thanks @LukasDistel).

• The read buffer size’s default value has changed from 1,000 rows to 20 MB.

• The parameter rows_to_buffer of turbodbc.connect() is _deprecated_. You can set the
read_buffer_size to turbodbc.Rows(1000) for the same effect, though it is recommended to specify
the buffer size in MB.

• Internal: Libraries no longer link libpython.so for local development (linking is already done by the Python
interpreter). This was always the case for the libraries in the packages uploaded to PyPI, so no change was
necessary here.

• Internal: Some modifications to the structure of the underlying C++ code.

Version 0.4.0

• NumPy support is introduced to turbodbc for retrieving result sets. Use cursor.fetchallnumpy to retrieve
a result set as an OrderedDict of column_name: column_data pairs, where column_data is a
NumPy MaskedArray of appropriate type.

• Internal: Single turbodbc_intern library was split up into three libraries to keep NumPy support optional.
A few files were moved because of this.

28 Chapter 6. Version history / changelog

turbodbc Documentation, Release 2.0.0

Version 0.3.0

• turbodbc now supports asynchronous I/O operations for retrieving result sets. This means that while the main
thread is busy converting an already retrieved batch of results to Python objects, another thread fetches an addi-
tional batch in the background. This may yield substantial performance improvements in the right circumstances
(results are retrieved in roughly the same speed as they are converted to Python objects).

Ansynchronous I/O support is experimental. Enable it with turbodbc.connect('My data source
name', use_async_io=True)

Version 0.2.5

• C++ backend: turbodbc::column no longer automatically binds on construction. Call bind() instead.

Version 0.2.4

• Result set rows are returned as native Python lists instead of a not easily printable custom type.

• Improve performance of Python object conversion while reading result sets. In tests with an Exasol database,
performance got about 15% better.

• C++ backend: turbodbc::cursor no longer allows direct access to the C++ field
type. Instead, please use the cursor‘s get_query() method, and construct a
turbodbc::result_sets::field_result_set using the get_results() method.

Version 0.2.3

• Fix issue that only lists were allowed for specifying parameters for queries

• Improve parameter memory consumption when the database reports very large string parameter sizes

• C++ backend: Provides more low-level ways to access the result set

Version 0.2.2

• Fix issue that dsn parameter was always present in the connection string even if it was not set by the user’s call
to connect()

• Internal: First version to run on Travis.

• Internal: Use pytest instead of unittest for testing

• Internal: Allow for integration tests to run in custom environment

• Internal: Simplify integration test configuration

Version 0.2.1

• Internal: Change C++ test framework to Google Test

6.16. Version 0.3.0 29

turbodbc Documentation, Release 2.0.0

Version 0.2.0

• New parameter types supported: bool, datetime.date, datetime.datetime

• cursor.rowcount returns number of affected rows for manipulating queries

• Connection supports rollback()

• Improved handling of string parameters

Version 0.1.0

Initial release

30 Chapter 6. Version history / changelog

CHAPTER 7

Troubleshooting

This section contains advice on how to troubleshoot ODBC connections. The advice contained here is not specific to
turbodbc, but very related.

Note: This section currently assumes you are on a Linux/OSX machine that uses unixodbc as a driver manager.
Windows users may find the contained information useful, but should expect some additional transfer work adjusting
the advice to the Windows platform.

Testing your ODBC configuration

You can test your configuration with turbodbc, obviously, by creating a connection. It is preferable, however, to use
the tool isql that is shipped together with unixodbc. It is a very simple program that does not try anything fancy
and is perfectly suited for debugging. If you configuration does not work with isql, it will not work with turbodbc.

Note: Before you file an issue with turbodbc, please make sure that you can actually connect your database using
isql.

When you have selected an ODBC configuration as outlined above, enter the following command in a shell:

> isql "data source name" user password -v

Specifying user and password is optional. On success, this will output a shell such as this:

+---------------------------------------+
| Connected! |
| |
| sql-statement |
| help [tablename] |
| quit |
| |

31

turbodbc Documentation, Release 2.0.0

+---------------------------------------+
SQL>

You can type in any SQL command you wish to test or leave the shell with the quit command. In case of errors, a
hopefully somewhat helpful error message will be displayed.

Common configuration errors

[IM002][unixODBC][Driver Manager]Data source name not found, and no default driver
→˓specified
[ISQL]ERROR: Could not SQLConnect

This usually means that the data source name could not be found because the configuration is not active. Troubleshoot-
ing:

• Check for typos in data source names in odbc.ini or your shell.

• Check if the correct odbc.ini file is used.

• Check the values of $ODBCSYSINI and $ODBCINI (usually only one should be set).

• Check if $ODBCINSTINI is set (usually it should not be set). Unset the variable.

• Check your data source has a Driver section.

[01000][unixODBC][Driver Manager]Can't open lib '/path/to/driver.so' : file not found
[ISQL]ERROR: Could not SQLConnect

This means the ODBC driver library cannot be opened. The suggested cause “file not found” may be misleading,
however, as this message may be printed even if the file exists. Troubleshooting:

• Check whether the library exists at the specified location.

• Check whether you have permission to read the library.

• Check whether the library depends on other shared libraries that are not present: * On Linux, use ldd /path/
to/library.so * On OSX, use otool -L /path/to/library.dylib

• Check whether any superfluous non-printable characters are present in your odbc.ini or odbcinst.ini
near the Driver line. Been there, done that...

More subtle issues

There are still a few errors to make even when you can successfully establish a connection with your database. Here
are a few common ones:

• Unsuitable locale: Some databases return data in a format dictated by your current locale settings. For example,
unicode output may require a locale that supports UTF-8, such as en-US.utf-8. Otherwise, replacement
characters appear instead of unicode characters. Set the locale via environment variables such as LC_ALL or
check whether your driver supports to set a locale in its connection options.

• Time zones: ODBC does not feature a dedicated type that is aware of time zones or the distinction between
local time and UTC. Some databases, however, feature separate types for, e.g., timestamps with and without
time zone information. ODBC drivers now need to find a way to make such information available to ODBC
applications. A usual way to do this is to convert (some) values into the session time zone. This may lead to

32 Chapter 7. Troubleshooting

turbodbc Documentation, Release 2.0.0

conflicting information when sessions with different time zones access the same database. The recommendation
would be to fix the session time zone to UTC whenever possible to keep things consistent.

7.3. More subtle issues 33

turbodbc Documentation, Release 2.0.0

34 Chapter 7. Troubleshooting

CHAPTER 8

Frequently asked questions

Can I use turbodbc together with SQLAlchemy?

Using Turbodbc in combination with SQLAlchemy is possible for a (currently) limited number of databases:

• EXASOL: sqlalchemy_exasol

• MSSQL: sqlalchemy-turbodbc

All of the above packages are available on PyPI. There are also more experimental implementations available:

• Vertica: Inofficial fork of sqlalchemy-vertica

Where would I report issues concerning turbodbc?

In this case, please use turbodbc’s issue tracker on GitHub.

Where can I ask questions regarding turbodbc?

Basically, you can ask them anywhere, chances to get a helpful answer may vary, though. I suggest to ask questions
either using turbodbc’s issue tracker on GitHub or by heading over to stackoverflow.

Is there a guided tour through turbodbc’s entrails?

Yes, there is! Check out these blog posts on the making of turbodbc:

• Part one: Wrestling with the side effects of a C API. This explains the C++ layer that is used to handle all calls
to the ODBC API.

35

http://www.exasol.com
https://github.com/blue-yonder/sqlalchemy_exasol
http://microsoft.com/sql
https://github.com/dirkjonker/sqlalchemy-turbodbc
https://www.vertica.com
https://github.com/startappdev/sqlalchemy-vertica
http://stackoverflow.com/search?q=turbodbc
http://tech.blue-yonder.com/making-of-turbodbc-part-1-wrestling-with-the-side-effects-of-a-c-api/

turbodbc Documentation, Release 2.0.0

• Part two: C++ to Python This explains how concepts of the ODBC API are transformed into an API compliant
with Python’s database API, including making use of pybind11.

I love Twitter! Is turbodbc on Twitter?

Yes, it is! Just follow @turbodbc for the latest turbodbc talk and news about related technologies.

How can I find our more about turbodbc’s latest developments?

There are a few options:

• Watch the turbodbc project on GitHub. This way, you will get mails for new issues, updates issues, and the like.

• Periodically read turbodbc’s change log

• Follow @turbodbc on Twitter. There will be tweets for new releases.

36 Chapter 8. Frequently asked questions

https://tech.blue-yonder.com/making-of-turbodbc-part-2-c-to-python/
https://github.com/pybind/pybind11
https://twitter.com/turbodbc
https://github.com/blue-yonder/turbodbc/blob/master/CHANGELOG.rst
https://twitter.com/turbodbc

CHAPTER 9

Contributing

Ways to contribute

Contributions to turbodbc are most welcome! There are many options how you can contribute, and not all of them
require you to be an expert programmer:

• Ask questions and raise issues on GitHub. This may influence turbodbc’s roadmap.

• If you like turbodbc, star/fork/watch the project on GitHub. This will improve visibility, and potentially attracts
more contributors.

• Report performance comparisons between turbodbc and other means to access a database.

• Tell others about turbodbc on your blog, Twitter account, or at the coffee machine at work.

• Improve turbodbc’s documentation by creating pull requests on GitHub.

• Improve existing features by creating pull requests on GitHub.

• Add new features by creating pull requests on GitHub.

• Implement dialects for SQLAlchemy that connect to databases using turbodbc.

Pull requests

Pull requests are appreciated in general, but not all pull requests will be accepted into turbodbc. Before starting to
work on a pull request, please make sure your pull request is aligned with turbodbc’s vision of creating fast ODBC
database access for data scientists. The safest way is to ask on GitHub whether a certain feature would be appreciated.

After forking the project and making your modifications, you can create a new pull request on turbodbc’s GitHub
page. This will trigger an automatic build and, eventually, a code review. During code reviews, I try to make sure that
the added code complies with clean code principles such as single level of abstraction, single responsibility principle,
principle of least astonishment, etc.

37

turbodbc Documentation, Release 2.0.0

If you do not know what all of this means, just try to keep functions small (up to five lines) and find meaningful names.
If you feel like writing a comment, think about whether the comment would make a nice variable or function name,
and refactor your code accordingly.

I am well aware that the current code falls short of clean code standards in one place or another. Please do not take
criticism regarding your code personally. Any comments are purely directed to improve the quality of turbodbc’s code
base over its current state.

Development version

For developing new features or just sampling the latest version of turbodbc, do the following:

1. Make sure your development environment meets the prerequisites mentioned in the getting started guide.

2. Create a Python virtual environment, activate it, and install the necessary packages numpy, pytest, and mock:

pip install numpy pytest pytest-cov mock

3. Make sure you have a recent version of cmake installed. For some operating systems, binary wheels are
available in addition to the package your operating system offers:

pip install cmake

4. Clone turbodbc into the virtual environment somewhere:

git clone https://github.com/blue-yonder/turbodbc.git

5. cd into the git repo and pull in the pybind11 submodule by running:

git submodule update --init --recursive

6. Create a build directory somewhere and cd into it.

7. Execute the following command:

cmake -DCMAKE_INSTALL_PREFIX=./dist /path/to/turbodbc

where the final path parameter is the directory to the turbodbc git repo, specifically the directory containing
setup.py. This cmake command will prepare the build directory for the actual build step.

8. Run make. This will build (compile) the source code.

9. At this point you can run the test suite. First, make a copy of the relevant json documents from the turbodbc
python/turbodbc_test directory, there’s one for each database. Then edit your copies with the relevant
credentials. Next, set the environment variable TURBODBC_TEST_CONFIGURATION_FILES as a comma-
separated list of the json files you’ve just copied and run the test suite, as follows:

export TURBODBC_TEST_CONFIGURATION_FILES="<Postgres json file>,<MySql json file>,
→˓<MS SQL json file>"
ctest --output-on-failure

10. Finally, to create a Python source distribution for pip installation, run the following from the build directory:

make install
cd dist
python setup.py sdist

38 Chapter 9. Contributing

turbodbc Documentation, Release 2.0.0

This will create a turbodbc-x.y.z.tar.gz file locally which can be used by others to install turbodbc
with pip install turbodbc-x.y.z.tar.gz.

9.3. Development version 39

turbodbc Documentation, Release 2.0.0

40 Chapter 9. Contributing

CHAPTER 10

API reference

turbodbc.connect(dsn=None, turbodbc_options=None, connection_string=None, **kwargs)
Create a connection with the database identified by the dsn or the connection_string.

Parameters

• dsn – Data source name as given in the (unix) odbc.ini file or (Windows) ODBC Data
Source Administrator tool.

• turbodbc_options – Options that control how turbodbc interacts with the database.
Create such a struct with turbodbc.make_options() or leave this blank to take the defaults.

• connection_string – Preformatted ODBC connection string. Specifying this and dsn
or kwargs at the same time raises ParameterError.

• **kwargs – You may specify additional options as you please. These options will go
into the connection string that identifies the database. Valid options depend on the specific
database you would like to connect with (e.g. user and password, or uid and pwd)

Returns A connection to your database

turbodbc.make_options(read_buffer_size=None, parameter_sets_to_buffer=None, pre-
fer_unicode=None, use_async_io=None, autocommit=None)

Create options that control how turbodbc interacts with a database. These options affect performance for the
most part, but some options may require adjustment so that all features work correctly with certain databases.

If a parameter is set to None, this means the default value is used.

Parameters

• read_buffer_size – Affects performance. Controls the size of batches fetched from
the database when reading result sets. Can be either an instance of turbodbc.Megabytes
(recommended) or turbodbc.Rows.

• parameter_sets_to_buffer – Affects performance. Number of parameter sets
(rows) which shall be transferred to the server in a single batch when executemany() is
called. Must be an integer.

41

turbodbc Documentation, Release 2.0.0

• use_async_io – Affects performance. Set this option to True if you want to use asyn-
chronous I/O, i.e., while Python is busy converting database results to Python objects, new
result sets are fetched from the database in the background.

• prefer_unicode – May affect functionality and performance. Some databases do not
support strings encoded with UTF-8, leading to UTF-8 characters being misinterpreted, mis-
represented, or downright rejected. Set this option to True if you want to transfer character
data using the UCS-2/UCS-16 encoding that use (multiple) two-byte instead of (multiple)
one-byte characters.

• autocommit – Affects behavior. If set to True, all queries and commands executed with
cursor.execute() or cursor.executemany() will be succeeded by an implicit commit operation,
persisting any changes made to the database. If not set or set to False, users has to take care
of calling cursor.commit() themselves.

Returns An option struct that is suitable to pass to the turbodbc_options parameter of tur-
bodbc.connect()

class turbodbc.connection.Connection(impl)

autocommit
This attribute controls whether changes are automatically committed after each execution or not.

close()
Close the connection and all associated cursors. This will implicitly roll back any uncommitted operations.

commit()
Commits the current transaction

cursor()
Create a new Cursor instance associated with this Connection

Returns A new Cursor instance

rollback()
Roll back all changes in the current transaction

class turbodbc.cursor.Cursor(impl)
This class allows you to send SQL commands and queries to a database and retrieve associated result sets.

close()
Close the cursor.

description
Retrieve a description of the columns in the current result set

Returns

A tuple of seven elements. Only some elements are meaningful:

• Element #0 is the name of the column

• Element #1 is the type code of the column

• Element #6 is true if the column may contain NULL values

execute(sql, parameters=None)
Execute an SQL command or query

Parameters

42 Chapter 10. API reference

turbodbc Documentation, Release 2.0.0

• sql – A (unicode) string that contains the SQL command or query. If you would like to
use parameters, please use a question mark ? at the location where the parameter shall be
inserted.

• parameters – An iterable of parameter values. The number of values must match the
number of parameters in the SQL string.

Returns The Cursor object to allow chaining of operations.

executemany(sql, parameters=None)
Execute an SQL command or query with multiple parameter sets.

Parameters

• sql – A (unicode) string that contains the SQL command or query. If you would like to
use parameters, please use a question mark ? at the location where the parameter shall be
inserted.

• parameters – An iterable of iterable of parameter values. The outer iterable represents
separate parameter sets. The inner iterable contains parameter values for a given parameter
set. The number of values of each set must match the number of parameters in the SQL
string.

Returns The Cursor object to allow chaining of operations.

fetchall()
Fetches a list of all rows in the active result set generated with execute() or executemany().

Returns A list of rows

fetchallnumpy()
Fetches all rows in the active result set generated with execute() or executemany().

Returns An OrderedDict of columns, where the keys of the dictionary are the column names.
The columns are of NumPy’s MaskedArray type, where the optimal data type for each
result set column is chosen automatically.

fetchmany(size=None)
Fetches a batch of rows in the active result set generated with execute() or executemany().

Parameters size – Controls how many rows are returned. The default None means that the
value of Cursor.arraysize is used.

Returns A list of rows

fetchnumpybatches()
Returns an iterator over all rows in the active result set generated with execute() or executemany().

Returns An iterator you can use to iterate over batches of rows of the result set. Each batch con-
sists of an OrderedDict of NumPy MaskedArray instances. See fetchallnumpy()
for details.

fetchone()
Returns a single row of a result set. Requires an active result set on the database generated with
execute() or executemany().

Returns Returns None when no more rows are available in the result set

setinputsizes(sizes)
Has no effect since turbodbc automatically picks appropriate return types and sizes. Method exists since
PEP-249 requires it.

43

turbodbc Documentation, Release 2.0.0

setoutputsize(size, column=None)
Has no effect since turbodbc automatically picks appropriate input types and sizes. Method exists since
PEP-249 requires it.

class turbodbc.exceptions.Error
turbodbc’s basic error class

class turbodbc.exceptions.InterfaceError
An error that is raised whenever you use turbodbc incorrectly

class turbodbc.exceptions.DatabaseError
An error that is raised when the database encounters an error while processing your commands and queries

class turbodbc.exceptions.ParameterError
An error that is raised when you use connection arguments that are supposed to be mutually exclusive

44 Chapter 10. API reference

CHAPTER 11

Indices and tables

• genindex

• modindex

45

Index

A
autocommit (turbodbc.connection.Connection attribute),

42

C
close() (turbodbc.connection.Connection method), 42
close() (turbodbc.cursor.Cursor method), 42
commit() (turbodbc.connection.Connection method), 42
connect() (in module turbodbc), 41
Connection (class in turbodbc.connection), 42
Cursor (class in turbodbc.cursor), 42
cursor() (turbodbc.connection.Connection method), 42

D
DatabaseError (class in turbodbc.exceptions), 44
description (turbodbc.cursor.Cursor attribute), 42

E
Error (class in turbodbc.exceptions), 44
execute() (turbodbc.cursor.Cursor method), 42
executemany() (turbodbc.cursor.Cursor method), 43

F
fetchall() (turbodbc.cursor.Cursor method), 43
fetchallnumpy() (turbodbc.cursor.Cursor method), 43
fetchmany() (turbodbc.cursor.Cursor method), 43
fetchnumpybatches() (turbodbc.cursor.Cursor method),

43
fetchone() (turbodbc.cursor.Cursor method), 43

I
InterfaceError (class in turbodbc.exceptions), 44

M
make_options() (in module turbodbc), 41

P
ParameterError (class in turbodbc.exceptions), 44

R
rollback() (turbodbc.connection.Connection method), 42

S
setinputsizes() (turbodbc.cursor.Cursor method), 43
setoutputsize() (turbodbc.cursor.Cursor method), 43

46

	Introduction
	Getting started
	Advanced usage
	ODBC configuration
	Databases configuration and performance
	Version history / changelog
	Troubleshooting
	Frequently asked questions
	Contributing
	API reference
	Indices and tables

